Proceedings of German Society for Stem Cell Research (PGSSCR)

Stem cell chemoattractant gene expression was upregulated by intramyocardial injection of Epoetin-α in a rat myocardial infarction model

Klopsch C1,*, Furlani D1,*, Gabel R1, Wagner K2, Wang W1, Ong LL1, Li W1, Nizze H3, Titze U3, Ma N1, Steinhoff G1

1Department of Cardiac Surgery, University of Rostock, Rostock, Germany
2Department of Anaesthesia, Klinikum Sudstadt, Rostock, Germany
3Department of Pathology, University of Rostock, Rostock, Germany
*Both authors contributed equally to this work.
nanma001@med.uni-rostock.de

Emerging evidence suggests that Erythropoietin (EPO) protects the myocardium from ischemic injury and promotes beneficial remodelling. However, the role of EPO and its receptor (EPO-R) in mediating cardiac regeneration remains unclear. We hypothesise that stem cell homing and proliferation modulated by EPO could contribute to its cardio-protective effects. After permanent left ventricular myocardial infarction (MI), Epoetin-α (3000 U/kg) was injected along the infarction border. At six weeks after MI, cardiac functionality was measured by pressure-volume loops in left and right ventricles. Infarction size, angiogenesis and pathologic effects were evaluated. Gene expressions of EPO-R, SDF-1, CXCR-4, c-kit, eNOS, TNF-α, IL-8, Integrin-β and CdK4 were analyzed by RT-PCR at different time points of the first week (24h, 48h, 96h and 7 days). Our findings indicated improved left ventricular function both at baseline levels and under Dobutamine stress (dp/dt maximum and minimum, tau, cardiac output, stroke work, ejection fraction n=11-14, p<0.05) and decreased right ventricular wall stress (maximum and endystolic pressure n=5-8, p<0.05). Infarction size was reduced from 27.8±3.4% to 20.1±2.8% (n=6-8, p<0.01). Capillary density was enhanced from 257.7±24.5 to 338.5±35.9 (vessels per square mm, n=6-8, p<0.05). Mortality was decreased from 29.0% to 22.2% (n=53-69). No thrombosis was observed in the intramural myocardium. EPO-R was down regulated in infarcted, peri-infarcted and non infarcted areas at all time points (n=7, p<0.05). Cardiac SDF-1?, CXCR-4 and eNOS expressions were increased at 24 hours. C-kit was up regulated significantly at 48 hours compared to 24 hours in the EPO treated hearts. In untreated hearts, c-kit expression remained constant. Proinflammatory cytokines (TNF-α, IL-8 and Integrin-β)? were down regulated. Cell cycle re-entry marker (CdK4) was increased at 24 hours in non infarcted zones. In conclusion, we demonstrate intramyocardium Epoetin-α injection induces an earlier up regulation of stem cell chemoattractants, reduces inflammation, enhances angiogenesis and restores heart function after MI.