Proceedings of German Society for Stem Cell Research (PGSSCR)

Telomerase-immortalized human mesenchymal stem cells (hMSCTERT) can be directed towards an endocrine differentiation pathway with insulin production

Limbert C1,2, Path G1, Ebert R2, Kassem M3, Jakob F2, Seufert J1

1University Hospital of Freiburg, Division of Endocrinology and Diabetology, Department of Internal Medicine II, Freiburg, Germany
2University of Wurzburg, Orthopedic Center for Musculoskeletal Research, Stem Cell Biology, Wurzburg, Germany
3University Hospital of Aarhus, Department of Endocrinology and Metabolism, Aarhus, Denmark

Published online on 16 May 2007

Introduction:

Adult stem cells are investigated as alternative source for beta-cell replacement therapy. So far, no consistent differentiation capacity for insulin producing cells has been shown in human bone marrow-derived mesenchymal stem cells (hMSC). Here we investigated the ability of hMSC-TERT cell line to differentiate into insulin-producing cells under regulation of hNgn3 and hPdx-1.

Materials & Methods:

hMSC-Tert endocrine progenitor potential was analysed. Subsequently, stably overexpressing hNgn3 and/or hPDX-1 cell lines were generated (hMSC-TN, hMSC-TP and hMSC-TN/P). Islet gene regulation and protein synthesis were analysed by RT-PCR, Western Blotting, reporter gene assays and immunocytochemistry. Insulin content and secretion were evaluated by ELISA.

Results:

hMSC-Tert expressed progenitor cell markers, nestin and c-met and displayed pancreatic endocrine gene expression under specific culture conditions. Generated cell lines highly overexpressed the ectopic genes along with regulation of multiple islet genes, including insulin. In hMSC-Tert, Ngn3 induced expression of endogenous Pdx-1. hMSC-TP revealed direct activation of insulin gene. Coexpression of Ngn3 and Pdx-1 did not show synergistic effect on insulin expression efficiency. Insulin was expressed, produced and stored under regulation of hNgn3 and/or Pdx-1. However, no glucose dependent insulin secretion was observed in these cells.

Conclusions:

In a human system of MSCs: introduction of key endocrine transcription factors is able to induce differentiation towards insulin-producing phenotypes; hNgn3 is able to trigger pancreatic endocrine differentiation cascade, lying upstream of Pdx-1; higher endocrine maturation must be achieved, in order to obtain functional hMSC that are suitable to the cell-based therapy of type1 diabetes.